如何在初中几何教学中渗透数学思想

网上有关“如何在初中几何教学中渗透数学思想”话题很是火热,小编也是针对如何在初中几何教学中渗透数学思想寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

如何在初中几何教学中渗透数学思想

数学思想方法是将数学知识转化为数学能力的桥梁,是解决数学问题的学科核心。现实中许多学生和教师觉得数学是一门枯燥无味的学科,老师教得很累,学生学得很辛苦,到头来还是成绩很差,这主要是在教学中没有注重数学思想的渗透,学生没有领悟和利用数学思想方法去解决问题。在初中数学教学中如何渗透数学思想方法,提高教学质量,成为一个探究内容。

一、初中数学思想方法

在初中数学蕴含着多种思想方法,但最基本的数学思想方法是函数与方程、数形结合、分类讨论、问题转化几种思想方法。

1.函数与方程思想

函数思想是指变量与变量之间的一种对应思想。方程思想则指把研究数学问题中已知量与未知量之间的数量关系,转化成方程或方程组等数学模型。例如:某工程队要招聘甲、乙两种工种的工人700人,甲、乙两种工种的工人的月工资分别为800元和1200元,现要求乙种工种的工人数不少于甲种工种人数的3倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?

2.代数与图形结合思想

代数与图形结合思想就是常说的数形结合思想,是数学中最古老和最普遍一种思想方法,数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。例如:如图所示:初中数学教学中如何渗透数学思想方法 <wbr>黄家超比较a,-a,b,-b的大小 简析:在数轴上指出-a,-b两个数表示的点,四数大小关系就一目了然。再如:有一十字路口,甲从路口出发向南直行,乙从路口以西1500米处向东直行,已知甲、乙同时出发,10分钟后两人第一次距十字路口的距离相等,40分钟后两人再次距十字路口距离相等,求甲、乙两人的速度。 简析:画出“十字’图,分析两人在10分钟、40分钟时的位置,有图分析列出方程组。

3.数学分类讨论思想

初中数学课本中有不少定理、公式法则、练习题,都需要我们去分类讨论,在教学这些内容时,应有有意识不断强化学生分类讨论的思想,让学生认识到这些问题,只有通过分类讨论后,得到的结论才是完整的、正确的,如不分类讨论,就很容易出现遗漏或错误。在解题教学中,通过分类讨论还有利于帮助学生概括,总结出规律性的东西,从而加强学生思维的条理性,缜密性。例如学习有理数后,对字母a与0的大小比较,还有一次函数y=(k-1)x+b的图像分布情况,需要进行分类讨论。

4.问题的转化思想

转化思想也称化归思想,它是指将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题,从而使问题顺利解决的数学思想。三角函数,几何变换,因式分解等数学理论无不渗透着转化的思想。常见的转化方式有:一般 特殊转化,等价转化,复杂 简单转化,联想转化,类比转化等。如二元一次方程组,三元一次方程组的解决实质就是化为已学过的一元一次方程。

二、在教学中渗透数学思想方法的途径

在数学教学的每一个知识环节里都蕴含数学思想方法,通过多种途径,激发学生的学习兴趣,渗透数学思想方法,提高学生学习效率。

1.在探究知识过程中,注重渗透数学思想方法

新课标要求,教学注重学生的知识形成过程,特别是定理、性质、公式的推导过程和例题的求解的过程,基本数学思想和数学方法都是在这个过程中形成和发展的,因而教师在讲授概念、性质、公式的过程中应重视推导过程,知识生成发展中把握时机不断渗透相关的数学思想方法,让学生在掌握表层知识的同时,又能领悟到深层数学思想方法,从而使学生思维产生质的飞跃。在教学过程中要引导学生主动参与结论的探索、发现、推导过程,搞清其中的因果关系,领悟它与其它知识的关系,让学生亲身体会创造性思维活动中所经历和应用到的数学思想和方法。

2. 通过范例和解题教学,综合运用数学思想方法

教师在教学中,对例题的认真分析,思考如何指导学生在范例中培养数学思想。在教学时,教师做好解题和反思活动,每次完成一个数学问题和范例就要向学生总结归纳解题方法,形成成数学思想,重视解决数学问题的过程,运用数学思想方法在解题途径中发生联想和转化,而初中数学新教材中,设计许多典型范例,每年中考题目中也出现很多优秀题目,教师善于选择具有启发性和创造性的题目进行练习,在对这些问题的分析和思考的过程中展示数学思想和教学方法,提高学生的解题思维能力。

3.及时小结逐步内化数学思想方法

数学思想是隐含在教材数学知识体系中,一个内容可蕴含多种不同的数学思想方法,常常在许多不同的基础知识之中运用同一数学思想方法,教师在讲解一道题目后,要揭示解题思路,涉及到的知识点和用到的思想方法,也可以鼓励学生谈谈自己的解题的思维过程,教师随后出一些相关题目给学生以进行强化刺激,让学生学会归纳、概括数学思想方法,在学生的脑海里有意识地内化数学思想,促使学生认识从感性到理论性的飞跃。

4.在解决问题过程中,不断加深数学思想方法

在教学中,往往出现学生当时听懂了,但是课后解题,特别是遇到新题就无所适从,其原因就是教师在教学中,拿到题目就把题目解答出来,遇到同类题目就照旧机械操作,学生感到厌烦疲劳,因此,在探究数学问题中,引导学生学会思考,从问题中真正领悟蕴含于数学问题中的思想方法。

数学题海无边,数学的思想方法却有限。我们教学中,对数学基础知识要强化巩固,过程要渗透和掌握基本的数学思想方法,学生会用方法解决问题。利用好教材,认真分析例题的编写意图,精选范例,在教师和学生的教与学的活动中,渗透和归纳数学思想方法,把学习的数学知识转化成学习数学的能力,让学生能轻松、愉快地学习数学,提高数学成绩。

如何在数学解题教学中渗透数学思想

重视数学“双基”教学,是我国中小学数学教学的传统优势;但毋庸置疑,其本身也存在着诸多局限性.如何继承和发展“双基”教学,是当前数学教育研究的一个重要课题.《上海市中小学数学课程标准》对此明确指出,“应与时俱进地重新审视数学基础”,并提出了新的数学基础观,其中把数学思想方法作为数学基础知识的一项重要内容.中国科学院院士、著名数学家张景中曾指出:“小学生学的数学很初等,很简单.但尽管简单,里面却蕴含了一些深刻的数学思想.”与以往教材相比,上海市小学数学新教材更加重视数学思想方法的教学,把基本的数学思想方法作为选择和安排教学内容的重要线索.让学生通过基础知识和基本技能的学习,懂得有条理地思考和简明清晰地表达思考过程,运用数学的思想方法分析和解决问题,以更好地理解和掌握数学内容,形成良好的思维品质,为学生后续学习奠定扎实的基础.面对新课程背景下渗透数学思想方法教学的新要求,作为新教材的实施者,下面就小学数学课堂教学中渗透数学思想方法的策略,谈谈自己的一些认识与实践.

一、小学数学教学中渗透数学思想方法的着眼点

1、渗透数学思想方法应加强过程性

渗透数学思想方法,并不是将其从外部注入到数学知识的教学之中.因为数学思想方法是与数学知识的发生发展和解决问题的过程联系在一起的内部之物.教学中不直接点明所应用的数学思想方法,而应该引导学生在数学活动过程中潜移默化地体验蕴含其中的数学思想方法,切忌生搬硬套、和盘托出.例如学生写出几个商是2的除法算式,通过观察可以归纳出被除数、除数和商之间的关系,大胆猜想出商不变的规律:可能是被除数和除数同时乘以或除以同一个数(零除外),商不变;也可能是同时加上或减去同一个数,商不变.到底何种猜想为真?学生带着问题运用不完全归纳举例验证自己的猜想,最终得到了“商不变性质”.所以学生获得“商不变性质”的过程,又是归纳、猜想、验证的体验过程,绝不是从外部加上一个归纳猜想验证.学生一旦感悟到这种思想,就会联想到加减法和乘法是否也存在类似的规律,从而把探究过程延续到课外.

2、渗透数学思想方法应强调反复性

小学生对数学思想方法领会和掌握有一个“从具体到抽象,从感性到理性”的认知过程,在反复渗透和应用中才能增进理解.例如学生对极限思想的领会就需要一个较长的反复认识过程.如刚认数时,让学生看到自然数0、1、2、3……是“数不完”的,初步体验到自然数有“无限多个”;学生举例验证乘法分配律,在举不完的情况下用省略号或字母符号表示;教学梯形面积计算公式之后,让梯形的上底无限逼近于0,得到三角形的面积计算公式……让学生多次经历在有限的时空里去领略“无限”的含义,最终达到对极限思想的理解.同时在具体进行教学时,教师应放慢脚步,使学生在充分地列举、不断地体验中,感悟“无限多、无限逼近”思想.如教学“圆的认识”时,学生画了几条对称轴后,我问这样的对称轴画得完吗?有的说画不完,有的说这么小的圆应该画得完吧.于是我让学生继续画,看到学生画得有些不耐烦了,再让他们观察课件演示“不断画”的画面 ,从而确信了“圆有无数条对称轴”.数学思想方法较数学知识有更大的抽象性和概括性,只有在教学过程中反复、长期地渗透,才能收到较好的效果.

3、渗透数学思想方法应注重系统性

数学思想方法的渗透要由浅入深,对数学思想方法的挖掘、理解和应用的程度,教师应作长远的规划.一般地,每一种数学思想方法总是随着数学知识的逐步加深而表现出一定的递进性,因而渗透时要体现出孕育、形成和发展的层次性.例如在组织学习“两位数加两位数”时,要体现出“化归”思想的孕育期:学生计算“36+17”一般有“(30+10)+(6+7)、36+10+7、36+4+13、36+20-3”等方法,从中看出学生已经有将复杂问题转化为简单问题的意识.在进行两位数乘除法的教学中,要逐步引导学生对此有较清晰的认识;在教学平行四边形面积公式的推导中,应启发学生自觉运用“化归”思想去确立新知学习的方法,平行四边形的面积可以通过分割、平移,转化为长方形的面积.这样,将表面无序的各个渗透点整合成了一个整体.

4、渗透数学思想方法应适时显性化

数学思想方法有一个从模糊到清晰、从未成形到成形再到成熟的过程.在教学中,思想方法何时深藏不露,何时显山露水,应审时度势,随机应变.一般而言,在低中年级的新授课中,以探究知识、解决问题为明线,以数学思想方法为暗线.但在知识应用、课堂小结或阶段复习时,根据需要,应对数学思想方法进行归纳和概括.小学高年级学生学习了一些基本的思想方法,可以直呼其名.如在学习“除数是小数的除法”时,先让学生尝试计算“6.75÷5.4”,不少学生一时想不出办法,此时我提示:如果除数是整数能算吗?学生顿时恍然大悟,发现可以利用“商不变性质”,将“除数是小数的除法”转化成为“除数是整数的除法”来解决,于是我即刻板书“转化”,这样开门见山让学生知道运用“转化”思想可以将有待解决的问题归结到已经解决的问题.

实践表明,以上策略是一个密切联系的有机整体,它们之间相互影响,相互促进.在教学中应抓住契机,适时地挖掘和提炼,促使学生去体验、运用思想方法,建立良好的认知结构和完善的能力结构.

二、小学数学教学中渗透数学思想方法的途径

1、在教学预设中合理确定

渗透数学思想方法,教师在进行教学预设时应抓住数学知识与思想方法的有效结合点,在教学目标中体现每个数学知识所渗透的数学思想方法.

如在概念教学中,概念的引入可以渗透多例比较的方法,概念的形成可以渗透抽象概括的方法,概念的贯通可以渗透分类的方法.在解决问题的教学中,通过揭示条件与问题的联系,渗透数学解题中常用的化归、数学模型、数形结合等思想.

有时某一数学知识蕴含了多种思想方法,教师可根据需要和学生的认知特点有所侧重,合理确定.例如上海市新教材将“运算定律、性质”整合在一起学习,就是要突出“归纳类比、数学结构”的思想方法,发展学生的直觉思维,促进学生的学习迁移,实现对“运算定律、性质”的完整认识.当然在学习过程中还要用到“观察,猜想,验证”等方法.只有在教学预设中确定了要渗透的主要数学思想方法,教师才会去研究落实相应的教学策略,怎样渗透?渗透到什么程度?把渗透数学思想方法纳入到教学目标(过程与方法)中,把数学思想方法的要求融入到备课的每一环节,减少教学中的盲目性和随意性.

2、在知识形成中充分体验

数学思想方法蕴含在数学知识之中,尤其蕴含于数学知识的形成过程中.在学习每一数学知识时,尽可能提炼出蕴含其中的数学思想方法,即在数学知识产生形成过程中,让学生充分体验.

如我在教学“角”的知识时,先让学生在媒体上观察“巨大的激光器发送了两束激光线”,然后由学生确定一点引出两条射线画角,感知角的“静止性”定义以及角的大小与所画边的长短无关的观念.再让学生用“两条纸片和图钉”等工具进行“造角”活动,不经意之间学生发现角可以旋转,并且随着两条纸片叉开的大小角又可以随意地变化.这样“角”便定义为“一条射线绕着它的端点旋转而成的”,这就是角的“运动性”定义,体现着运动和变化的数学思想.学生在“画角、造角”活动中经历了“角”的产生、形成和发展,从中感悟的数学思想是充分与深刻的.

数学思想方法呈现隐蔽形式.学生在经历知识形成的过程中,通过观察、实验、抽象、概括等活动体验到知识负载的方法、蕴涵的思想,那么学生所掌握的知识就是鲜活的、可迁移的,学生的数学素质才能得到质的飞跃

3、在方法思考中加强深究

处理数学内容要有一定的方法,但数学方法又受数学思想的制约.离开了数学思想指导的数学方法是无源之水、无本之木.因此在数学方法的思考过程中,应深究数学的基本思想.

如我在教学四年级“看谁算得巧”一课时,学生计算“1100÷25”主要采用了以下几种方法:①竖式计算 ②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5 ④1100÷25=11×(100÷25) ⑤1100÷25=1100÷100×4 ⑥ 1100÷25=1000÷25+100÷25.在学生陈述了各自的运算依据后,引导学生比较上述方法的异同,结果发现方法①是通法,方法②——⑥是巧法.方法②——⑥虽各有千秋,方法③、④、⑥运用了数的分拆,方法②属等值变换,方法⑤类似于估算中的“补偿”策略,但殊途同归,都是抓住数据特点,运用学过的运算定律、性质转化为容易计算的问题.学生对各种方法的评价与反思,就是去深究方法背后的数学思想,从而获得对数学知识和方法的本质把握.

新课程所倡导的“算法多样化”的教学理念,就是让学生在经历算法多样化的学习过程中,通过对算法的归纳与优化,深究背后的数学思想,最终能灵活运用数学思想方法解决问题,让数学思想方法逐步深入人心,内化为学生的数学素养.

4、在问题解决中精心挖掘

在数学教学中,解题是最基本的活动形式.任何一个问题,从提出直到解决,需要具体的数学知识,但更多的是依靠数学思想方法.因此,在数学问题的探究发现过程中,要精心挖掘数学的思想方法.

如我在教学三年级“植树问题”时,首先呈现:在一条100米长的路的一侧,如果两端都种,每2米种一棵,能种几棵?面对这一挑战性的问题,学生纷纷猜测,有的说种50棵,有的说种51棵.到底有几棵?我们能否从“种2、3棵……”出发,先来找一找其中的规律呢?随着问题的抛出,学生陷入了沉思.如果把你们的一只手5指叉开看作5棵树,每两棵树之间就有一个“间隔”(板书),一共有几个间隔?学生若有所思地回答是4个.如果种6棵、7棵……,棵数与间隔的个数有怎样的关系呢?于是我启发学生通过动手摆一摆、画一画、议一议,发现了在两端都种时棵数和间隔数之间的数量关系(棵数=间隔数+1),顺利地解决了上述问题.然后又将问题改为“只种一端、两端不种时分别种几棵”,学生运用同样的方法兴趣盎然地找到了答案.以上问题解决过程给学生传达这样一种策略:当遇到复杂问题时,不妨退到简单问题,然后从简单问题的研究中找到规律,最终来解决复杂问题.通过这样的解题活动,渗透了探索归纳、数学建模的思想方法,使学生感受到思想方法在问题解决中的重要作用.

因此,教师对数学问题的设计应从数学思想方法的角度加以考虑,尽量安排一些有助于加深学生对数学思想方法体验的问题,并注意在解决问题之后引导学生进行交流,深化对解题方法的认识.

5、在复习运用中及时提炼

数学思想方法随着学生对数学知识的深入理解表现出一定的递进性.在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值.

如我在教学五年级“平面图形的面积复习”时,让学生写出各种平面图形(长方形、正方形、平行四边形、三角形、梯形和菱形)的面积计算公式后提问:这些计算公式是如何推导出来的?每位同学选择1~2种图形,利用学具演示推导过程,然后在小组内交流.交流之后我又指出:你能将这些知识整理成知识网络吗?当学生形成知识网络后,再次引导学生将这些平面图形面积计算公式统一为梯形的面积计算公式.通过以上活动,深化了对“化归”思想的理解,重组了学生已有的认知结构,拓展了数学思维,数学思想方法作为数学认知结构形成的核心起到了重要的组织作用.

同时在教学中,如果只满足于对数学思想的感悟和体验,还不足以肯定学生已领会了所用的数学思想方法.只有当学生将某一思想方法应用于新的情境,能够解决其他有关问题并有所创意时,才能肯定学生对这一数学方法有了较为深刻的认识.如学生对乘法有了初步认识,我就让他们把“6+6+6+3”改写成简便的算式.大多数学生做出了“3×6+3”与“4×6-3”的改写,但有个别学生写出了“3×7”的算式.其运算之巧妙,思路之独特,对于一个二年级小朋友而言,是难能可贵的.其次,当学生的创造力正处于某种良好的准备状态时,教师应不失时机地诱导他们去创造性解题.如在学生掌握长方体、正方体的体积计算之后,我呈现一块不规则的橡皮泥,要求学生尝试不同的方案计算体积.学生经过独立思考与合作交流,找到三种解决方案:①先捏成长方体或正方体,再计算 ②浸没在长方体水槽中,计算上升部分水的体积 ③称出橡皮泥的重量,再除以每立方厘米橡皮泥的重量(比重).解决方案的获得来自于学生对“化归”思想的主动运用,然后予以进一步提炼,使数学思想方法在知识能力的形成过程中共同生成.

从以上实践不难看出,如果把教师的教学预设看作教学渗透的前期把握,那末数学知识的形成过程、数学方法的思索过程、问题解决的发现过程以及复习运用的归纳过程就是学生形成数学思想方法的源泉.学生在学习过程中要自己去体验、深究、挖掘、提炼,从中揣摩和感受数学思想方法,形成自身的数学思考方法,提高分析问题、解决问题的能力.

三、问题与思考

美国教育心理学家布鲁纳指出:掌握基本的数学思想方法,能使数学更易于理解和记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”.在小学数学教学中教师应站在数学思想方法的高度,以数学知识为载体,兼顾小学生的年龄特点,把握时机、及时渗透数学思想方法,引导学生主动运用数学思想方法的意识,促进学生学习数学知识和掌握思想方法地均衡发展,为他们后继学好数学打下扎实的基础.

但在教学实践研究中,我又面临着如下问题与思考:

1、新课程将数学思想方法纳入到“知识与技能”这一教学目标范畴,丰富了数学知识的内涵.但在小学阶段的“内容和要求”中,对渗透数学思想方法的教学要求略显笼统,没有明确细化为适合不同学段学生的具体渗透内容与要求,并形成系列,这给教师的教学把握带来一定困难.

2、对于小学生数学学习的评价、目前仍偏重于传统意义上的“双基”,体现与运用数学思想方法的数学问题偏少,不利于考察教师渗透数学思想方法的教学效果和学生的数学素养,对于学生应用数学思想方法促进数学思维活动的创新意识的评价有待于进一步的探索.

3、小学数学知识比较浅显,但蕴含着丰富的数学思想方法,如何处理好数学知识教学和思想方法渗透之间的关系,以至形成适合不同学段学生进行数学思想方法渗透的教学模式,应作深入的思考与实践.

请采纳

如果你认可我的回答,敬请及时采纳,

~如果你认可我的回答,请及时点击采纳为满意回答按钮

~~手机提问的朋友在客户端右上角评价点满意即可.

~你的采纳是我前进的动力

~~O(∩_∩)O,记得好评和采纳,互相帮助

如何在数与代数教学中渗透数学思想方法

一、数学思想方法教学与能力的关系

思想方法就是客观存在反映在人的意识中经过思维活动而产生的结果,它是从大量的思维活动中获得的产物,经过反复提炼和实践,一再被证明为正确、可以反复被应用到新的思维活动中,并产生出新的结果。数学思想方法,就是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果,它是对数学事实与数学理论(概念、定理、公式、法则等)的本质认识。所以,数学思想是对数学知识的本质认识,是对数学规律的理性认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想。数学方法是指从数学角度提出问题、解决问题(包括数学内部问题和实际问题)的过程中所采用的各种方式、手段、途径等。数学思想和数学方法是紧密联系的,一般来说,强调指导思想时称数学思想,强调操作过程时称数学方法。

数学思想方法是形成学生的良好的认知结构的纽带,是由知识转化为能力的桥梁。中学数学教学大纲中明确指出:数学基础知识是指数学中的概念、性质、法则、公式、公理、定理以及由其内容所反映出来的数学思想方法。数学思想和方法纳入基础知识范畴,足见数学思想方法的教学问题已引起教育部门的重视,也体现了我国数学教育工作者对于数学课程发展的一个共识。这不仅是加强数学素养培养的一项举措,也是数学基础教育现代化进程的必然与要求。这是因为数学的现代化教学,是要把数学基础教育建立在现代数学的思想基础上,并使用现代数学的方法和语言。因此,探讨数学思想方法教学的

一系列问题,已成为数学现代教育研究中的一项重要课题。

从心理发展规律看,初中学生的思维是以形式思维为主向辨证思维过渡,高中学生的思维则是辨证思维的形成。进行数学思想方法教学,不仅有助于学生从形式思维向辩证思维过渡,而且是形成和发展学生辩证思维的重要途径。

从认知心理学角度看,数学学习过程是一个数学认知结构的发展变化过程,这个过程是通过同化和顺应两种方式实现的。所谓同化,就是主体把新的数学学习内容纳入到自身原有的认知结构中去,把新的数学材料进行加工改造,使之与原教学学习认知结构相适应。所谓顺应,是指主体原有的数学认识结构不能有效地同化新的学习材料时,主体调整成改造原来的数学内部结构去适应新的学习材料.在同化中,数学基础知识不具备思维特点和能动性,不能指导“加工”过程的进行。而心理成份只给主体提供愿望和动机,提供主体认知特点,仅凭它也不能实现“加工”过程。数学思想方法不仅提供思维策略(设计思想),而且还提供实施目标的具体手段(解题方法)。实际上数学中的转化、化归就是实现新旧知识的同化。与同化一样,顺应也在数学思想方法的指导下进行。积极进行数学思想方法教学,将极大地促进学生的数学认知结构的发展与完善。

从学习迁移看,数学思想方法有利于学生学习迁移,特别是原理和态度的迁移,从而可以极大地提高学习质量和数学能力。布鲁纳认为

“学习基本原理的目的,就在于促进记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。”由此可见,数学思想方法作为数学学科的“一般原理”,在教学中是至关重要的,因此,对于中学生,不管他们将来从事什么工作,唯有深深地铭刻于头脑中的数学思想方法将随时随地发生作用,使他们受益终生。

二、数学思想方法的教学原理

数学思想方法的教学原理是说明数学思想方法的教学规律的。中学数学的课程内容是由具体的数学知识与数学思想方法组成的有机整体,现行数学教材的编排一般是沿知识的纵方向展开的,大量的数学思想方法只是蕴涵在数学知识的体系之中,并没有明确的揭示和总结。这样就产生了如何处理数学思想方法教学的问题。进行数学思想方法的教学,必须在实践中探索规律,以构成数学思想方法教学的指导原则。数学思想方法的构建有三个阶段:潜意识阶段、明朗和形成阶段、深化阶段。一般来说,应以贯彻渗透性原则为主线,结合落实反复性、系统性和明确性的原则.它们相互联系,相辅相成,共同构成数学思想方法教学的指导思想。

一、在教学预设中挖掘数学思想方法

渗透数学思想方法,教师在进行教学预设时就应抓住数学知识与思想方法的有效结合点,在教学目标中体现每个数学知识所渗透的数学思想方法。教师在备课时,要从数学思想方法的高度深入钻研教材,通过对情境的设定,例题、练习的探讨,挖掘有关的数学思想方法。

如在教学《负数》一课时,光从知识角度来看,难度不大,很多学生在上课前稍微看过书的,都能看懂。所以我备课时,注重去挖掘教材内在的数学思想,丰富课的内涵。我认为本课可以渗透以下几个数学思想:符号化思想、数与点之间的一一对应思想、辨证思想、极限思想。如怎样引出课题呢?我设计学生先进行课前“正话反做”的游戏,让学生体会意思相反的两个量,接着以货物进出仓库的生活中非常普通的情境作为切入点,让学生从记录单的表达方式中体会生活中存在着相反意义的量,进而探索能清晰地表示出相反意义的量的表达方法。这一情境赋予了数学学习以生活情趣,拉近了数学知识与学生之间的距离。当学生用各种不同的表达方法表示出“运进”和“运出”后,教师适时引入数学史料,使学生既获得方法的领悟,又受到思想的启迪、精神的熏陶。从文字到符号,学习的抽象程度在递升,建构的思维含量在增加。接着又让学生通过观察温度计、以及常见的两个相反方向行走的例子,从这些现象当中得到数轴、抽象出数轴这样一个概念。再通过观察数与数轴上的点,建立数与点的一一对应关系,体会数的无穷大与无限小。

二、在知识形成过程中体验数学思想方法

数学思想方法蕴含在数学知识之中,尤其蕴含于数学知识的形成过程中。在学习每一数学知识时,尽可能提炼出蕴含其中的数学思想方法,即在教学活动中,倡导学生主动参与,重视知识形成的过程,在过程中渗透数学思想方法,并让学生充分体验。

如在教学《比的基本性质》一课时,我不是简单地给出定义,而是尽可能完整地再现形成定义之前的分析、综合、比较和概括等思维过程,揭示隐藏其中的思想方法。本课是学生已经掌握了商不变的性质和分数基本性质的基础上教学的。六年级的学生有一定的推理概括

能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,所以这节课我充分调动的思维,先用两组判断题唤起学生对商不变的性质、分数的基本性质的回忆。根据比和分数、除法的的关系,猜测出比也有相似的性质——比的前项和后项同时乘或除以相同的数(0除外),继而通过观察、类比、验证探讨得出“比的基本性质”。事实证明,通过前后知识的联系,让学生很快得出了“比的基本性质”,不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学生成功的印记。

关于“如何在初中几何教学中渗透数学思想”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(51)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 旗云飞的头像
    旗云飞 2025年12月09日

    我是鲸羚号的签约作者“旗云飞”

  • 旗云飞
    旗云飞 2025年12月09日

    本文概览:网上有关“如何在初中几何教学中渗透数学思想”话题很是火热,小编也是针对如何在初中几何教学中渗透数学思想寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望...

  • 旗云飞
    用户120902 2025年12月09日

    文章不错《如何在初中几何教学中渗透数学思想》内容很有帮助

联系我们:

邮件:鲸羚号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信